Comparing elltors

for $y^2 + xy = x^3 + x^2 + 1$ :
``` (00:37) gp > a = 1 %1 = 1 (00:37) gp > b = 1 %2 = 1 (00:37) gp > E = ellinit([0,0,0,a,b]) %3 = [0, 0, 0, 1, 1, 0, 2, 4, -1, -48, -864, -496, 6912/31, [-0.6823278038280193273694837397, 0.3411639019140096636847418698 - 1.161541399997251936087917687*I, 0.3411639019140096636847418698 + 1.161541399997251936087917687*I]~, 3.749942978094342855851406868, -1.874971489047171427925703434 + 1.321720533565204538833995727*I, -1.256789871861911570289134735 + 0.E-29*I, 0.6283949359309557851445673678 - 1.280744177088026904445230577*I, 4.956376633845946955308257251] (00:38) gp > elltors(E) %4 = [1, [], []] ```

for $y^2 + xy = x^3 + z^3x^2 + (z^3+1)$
``` (00:38) gp > a = 8 %5 = 8 (00:39) gp > b = 9 %6 = 9 (00:39) gp > E=ellinit([0,0,0,a,b]) %7 = [0, 0, 0, 8, 9, 0, 16, 36, -64, -384, -7776, -67760, 3538944/4235, [-1.000000000000000000000000000, 0.5000000000000000000000000000 - 2.958039891549808021283664145*I, 0.5000000000000000000000000000 + 2.958039891549808021283664145*I]~, 2.323573124298217095517745754, -1.161786562149108547758872877 + 0.9328742056162391756323628615*I, -1.773647591593647783280373514 + 0.E-28*I, 0.8868237957968238916401867572 - 2.064141081460241175088749935*I, 2.167601432520942242537573241] (00:39) gp > elltors(E) %8 = [2, [2], [[-1, 0]]] ```